[1] 周济. 智能制造——“中国制造2025”的主攻方向[J]. 中国机械工程, 2015, 26(17):2273-2284.
[2] 工信部装备工业司.《中国制造2025》推动机器人发展[J]. 机器人技术与应用, 2015, (3):31-33.
[3] 邓伟. 交流伺服系统的发展状况[J]. 电器工业, 2018, (7):20-23.
[4] 林伟杰. 永磁同步电机伺服系统控制策略的研究[D]. 杭州:浙江大学, 2005.
[5] 唐任远. 现代永磁电机理论与设计[M]. 北京:机械工业出版社, 2015:1-4.
[6] 卞延庆, 庄海, 张颖杰. 基于模糊PI的永磁同步电机矢量控制研究[J]. 微电机, 2015, 48(11):62-66, 93.
[7] Yim J S, Sul S K, Bae B H, et al. Modified Current Control Schemes for High-Performance Permanent-Magnet AC Drives With Low Sampling to Operating Frequency Ratio[J]. IEEE Transactions on Industry Applications, 2009, 45(2):763-771.
[8] Kommuri S K, Rath J J, Veluvolu K C, et al. Decoupled current control and sensor fault detection with second-order sliding mode for induction motor[J]. IET Control Theory and Applications, 2015, 9(4):608-617.
[9] Zhu H, Xiao X, Li Y D. PI Type Dynamic Decoupling Control Scheme for PMSM High Speed Operation[C]. 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2010:1736-1739.
[10] 安志凯, 王琛琛, 苟立峰. 基于动态相对增益阵列的永磁同步电机电流控制器解耦分析[J]. 电工技术学报, 2019, 34(6):1161-1169.
[11] 许成俊, 张兴, 洪剑峰. 永磁同步电机复矢量电流调节器解耦性能分析[J]. 电力电子技术, 2020, 54(09):1-3.
[12] 吴为, 丁信忠, 严彩忠. 基于复矢量的电流环解耦控制方法研究[J]. 中国电机工程学报, 2017, 37(14):4184-4191.
[13] 包芳泉, 郭昊昊, 刘彦呈, 等. 基于复矢量解耦的电流环动态性能改进策略[J]. 微电机, 2019, 52(12):74-80.
[14] Briz F, Degner M W, Lorenz R D. Analysis and Design of Current Regulators Using Complex Vectors[J]. IEEE Transactions on Industry Applications, 2000, 36(3):817-825.
[15] 付博. 永磁同步电动机动态解耦控制技术研究[D]. 哈尔滨:哈尔滨工业大学, 2010.
[16] 刘宇博, 王旭东, 周凯. 基于滑模观测器的永磁同步电机电流偏差解耦控制[J]. 电工技术学报, 2020, 35(8):1642-1652.
[17] Ding S C, Ding M, Hang J, et al. Loss Reduction of Permanent Magnet Synchronous Machines based on Decoupling Control Strategy[C]. 2017 20th International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2017:1-5.
[18] 司梦. 永磁同步电机电流环偏差解耦控制策略研究[D]. 西安:西安理工大学, 2019.
[19] 黄宴委, 熊少华. 基于内模控制的永磁同步电机电流环观测器设计[J]. 中国电机工程学报, 2016, 36(11):3070-3075.
[20] Xia C L, Yan Y, Song P, et al. Voltage Disturbance Rejection for Matrix Converter-Based PMSM Drive System Using Internal Model Control[J]. IEEE Transactions on Industrial Electronics, 2012, 59(1):361-372.
[21] 杨亮亮, 周云飞, 赵江涛. 基于内模电流解耦的PMSM矢量控制研究[J]. 电气传动, 2008, 38(9):22-26.
[22] Harnefors L, Nee H P. Model-Based Current Control of AC Machines Using the Internal Model Control Method[J]. IEEE Transactions on Industry Applications, 1998, 34(1):133-141.
[23] 张涛, 余海涛.基于改进内模控制的永磁同步电机电流环设计[J]. 电机与控制应用, 2017, 44(12):1-5, 65.
[24] Zhang Y C, Xu D L, Liu J L, et al. Performance Improvement of Model-Predictive Current Control of Permanent Magnet Synchronous Motor Drives[J]. IEEE Transactions on Industry Applications, 2017, 53(4):3683-3695.
[25] 夏超英, Sadiq ur Rahman, 刘煜. 永磁同步电机高速运行时电流调节器稳定性分析与设计[J]. 中国电机工程学报, 2020, 40(S01):1-10.
[26] 汪书苹, 赵争鸣. 带修正因子模糊PID控制的PMSM交流伺服系统[J]. 清华大学学报(自然科学版), 2007, 47(1):9-12.
[27] Patil N J, Chile R H, Waghmare L M . Fuzzy Adaptive Controllers for Speed Control of PMSM Drive[J]. International Journal of Computer Applications, 2010, 1(11):91-98.
[28] Shen J X, Zhu Z Q, Howe D, et al. Adaptive Fuzzy Logic Control of PM Brushless AC Drives[C]. 2002 International Conference on Power Electronics, Machines and Drives. IEE, 2002:68-73.
[29] Zhao H, Luo P, Wang N, etc. Brushless DC Motor Control via Fuzzy Systems with Variable Contraction-expansion factors[C]. The 30th Chinese Control and Decision Conference (2018 CCDC), 2018:6199-6203.
[30] Wang C, Zhu Z Q. Fuzzy Logic Speed Controller with Adaptive Voltage Feedback Controller of Permanent Magnet Synchronous Machine[C]. 2018 XIII International Conference on Electrical Machines (ICEM). IEEE, 2018:1524-1530.
[31] Mesloub H, Benchouia M T, Boumaaraf R, et al. Design and implementation of DTC based on AFLC and PSO of a PMSM[J]. Mathematics and Computers in Simulation, 2020, 167:340-355.
[32] 莫理莉. 基于滑模变结构的表面式永磁同步电机速度与位置控制[D]. 广州:华南理工大学, 2020.
[33] 胡强晖, 胡勤丰.全局滑模控制在永磁同步电机位置伺服系统中的应用[J]. 中国电机工程学报, 2011, 31(18):61-66.
[34] Eker I. Sliding mode control with PID sliding surface and experimental application to an electromechanical plant[J]. ISA Transactions, 2006, 45(1):109-118.
[35] 汪海波, 周波, 方斯琛. 永磁同步电机调速系统的滑模控制[J]. 电工技术学报, 2009, 24(9):71-77.
[36] Zhang X G, Sun L Z, Zhao K, et al. Nonlinear Speed Control for PMSM System Using Sliding-Mode Control and Disturbance Compensation Techniques[J]. IEEE Transactions on Power Electronics, 2013, 28(3):1358-1365.
[37] 方靖荃, 邓文翔, 姚建勇, 等. 电机伺服系统快速自适应抗扰控制[J]. 西安交通大学学报, 2021, 55(06):1-9.
[38] 王健, 蓝益鹏. 基于参数局部最优化理论的电励磁直线同步电机自适应速度控制[J]. 电机与控制应用, 2020, 47(4):1-9.
[39] Talla J , Leu V Q, Smidl V, et al. Adaptive Speed Control of Induction Motor Drive With Inaccurate Model[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11):8532-8542.
[40] Nguyen A T, Rafaq M S, Choi H H, et al. A Model Reference Adaptive Control Based Speed Controller for a Surface-Mounted Permanent Magnet Synchronous Motor Drive[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12):9399-9409.
[41] 潘剑. 基于滑模变结构控制的永磁同步电机伺服系统[D]. 杭州:浙江大学, 2008.
[42] 李坚. 基于DSP的三闭环交流永磁同步电机伺服系统的设计与实现[D]. 成都:电子科技大学, 2010.
[43] 赵文杰, 刘吉臻, 弓学敏. 不确定非线性系统变结构控制的研究[J]. 华北电力大学学报, 2005, 32(5):22-26.
[44] Sepe R B, Lang J H. Real-Time Adaptive Control of the Permanent-Magnet Synchronous Motor[J]. IEEE Transactions on Industry Applications, 1991, 27(4):706-714.
[45] 顾用地, 陆俊. 永磁同步电机伺服系统的RBF神经网络PID控制[J]. 电气自动化, 2013, 35(4):34-36.
[46] 张君, 黄鹤, 张国忠. 一种基于预测补偿的人工智能伺服控制系统[J]. 武汉大学学报(工学版), 2001, 34(5):64-68.
[47] Zadeh L A. Fuzzy Sets[J]. Information and Control, 1965, 8(3):338-353.
[48] Liaw C M, Wang J B. Design and Implementation of a Fuzzy Controller for a High Performance Induction Motor Drive[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1991, 21(4):921-929.
[49] Uddin M N, Rahman M A. Fuzzy Logic Based Speed Control of an IPM Synchronous Motor Drive[C]. Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer Engineering. IEEE, 1999:1259-1264.
[50] Shen J X, Zhu Z Q, Howe D, et al. Fuzzy logic speed control and current-harmonic reduction in permanent-magnet brushless AC drives[J]. IEE Proceedings-Electric Power Applications, 2005, 152(3):437–446.
[51] 陈荣. 永磁同步电机伺服系统研究[D]. 南京:南京航空航天大学, 2004.
[52] 王嘉, 范蟠果. PMSM伺服系统位置环的PI-模糊混合控制器研究[J]. 微电机, 2020, 53(7):33-36.
[53] Yang J, Li S H, Su J Y, et al. Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances[J]. Automatica, 2013, 49(7):2287-2291.
[54] 刘京. 基于永磁同步电机的大型望远镜低速伺服系统研究[D]. 长春:中国科学院大学, 2018.
[55] 史晓娟, 杨紫艳. PMSM伺服系统的自适应模糊滑模切换控制[J]. 微特电机, 2016, 44(12):58-62, 76.
[56] Ali N, Rehman A U, Alam W, et al. Disturbance Observer Based Robust Sliding Mode Control of Permanent Magnet Synchronous Motor[J]. Journal of Electrical Engineering and Technology, 2019, 14(6):2531-2538.
[57] Lai C K, Shyu K K. A Novel Motor Drive Design for Incremental Motion System via Sliding-Mode Control Method[J]. IEEE Transactions on Industrial Electronics, 2005, 52(2):499-507.
[58] Wu Y Q, Yu X H, Man Z H. Terminal sliding mode control design for uncertain dynamic systems[J]. Systems & Control Letters, 1998, 34(5):281-287.
[59] Jiang J F, Zhou X J, Zhao W, etc. A fast integral sliding mode controller with an extended state observer for position control of permanent magnet synchronous motor servo systems[J]. Frontiers of information Technology & Electronic Engineering, 2020, 21(8):1239-1250.
[60] 韩向伟. 交流永磁同步电动机的高阶滑模控制[D]. 哈尔滨:哈尔滨工业大学, 2007.
[61] 程启明, 程尹曼, 王映斐, 等. 交流电机控制策略的发展综述[J]. 电力系统保护与控制, 2011, 39(9):145-154.
[1]沈建新,何 标.低载波比工况下永磁同步电机磁链矢量轨迹分析[J].微电机,2020,53(06):1.
SHEN Jianxin,HE Biao.Flux Linkage Vector Trajectory of Permanent Magnet Synchronous Machines Under Low Carrier Ratio Condition[J].MICROMOTORS,2020,53(08):1.
[2]安忠良,贾天豪,孙 宁,等.低转矩脉动永磁电机的转子结构设计[J].微电机,2020,53(06):33.
AN Zhongliang,JIA Tianhao,SUN Ning,et al.Design of low torque pulsation rotor structure of permanent magnet motor[J].MICROMOTORS,2020,53(08):33.
[3]柯少兴,李建贵,郝 诚,等.基于滑模观测器估计误差反馈的永磁同步电机转速控制策略[J].微电机,2020,53(06):48.
KE Shaoxing,LI Jiangui,HAO Cheng,et al.Speed Control Strategy of PMSM Based on Estimation Error Feedback of Synovial Mode Observer[J].MICROMOTORS,2020,53(08):48.
[4]孟淑平,朱家厅,张立娟,等.基于新型扩张状态观测器的PMSM周期性转速脉动抑制方法[J].微电机,2020,53(06):58.
MENG Shuping,ZHU Jiating,ZHANG Lijuan,et al.PMSM Periodic Speed Ripple Minimization Based on New Type Extended State Observer[J].MICROMOTORS,2020,53(08):58.
[5]张 锦,朱晨光,於 锋,等.永磁同步电机三电平改进型双矢量模型预测磁链控制[J].微电机,2020,53(06):72.
ZHANG Jin,ZHU Chenguang,YU Feng,et al.Improved Double-vector-based Model Predictive Flux Control of a Three-level-based Permanent Magnet Synchronous Motor[J].MICROMOTORS,2020,53(08):72.
[6]王福杰.基于模糊PID控制和BP神经网络PID控制的永磁同步电机调速方案比较研究[J].微电机,2020,53(06):103.
WANG Fujie.A Comparative Study of Speed Control Schemes of PMSM Based on Fuzzy PID Control and BP Neural Network PID Control[J].MICROMOTORS,2020,53(08):103.
[7]康娟,蒋卫伟,杨思雨,等.电动客车用永磁同步电机噪声特性研究[J].微电机,2020,53(01):20.
KANG JuanJIANG WeiweiYANG SiyuDING JifeiQin Yakun.Noise Characteristics Study of Permanent Magnet S ynchronous Motor for Electric Bus[J].MICROMOTORS,2020,53(08):20.
[8]姚艳艳,张会娟,刘建娟,等.基于自适应滑模观测器无位置传感器PMSM控制方法研究[J].微电机,2020,53(12):60.
YAO Yanyan,ZHANG Huijuan,LIU Jianjuan,et al.Research on PMSM Without Position Sensors Control Based on Adaptive Sliding Mode Observer[J].MICROMOTORS,2020,53(08):60.
[9]郭宝双,王爱元,张言纯,等.优化开关频率的六相永磁同步电机改进模型预测电流控制[J].微电机,2020,53(12):67.
GuoBaoshuang,WangAiyuan,Zhang Yanchun,et al.Improved Model Predictive Current Control for Six-Phase Permanent Magnet Synchronous Motor With Optimized Switching Frequency[J].MICROMOTORS,2020,53(08):67.
[10]蔡军,李鹏泽,黄袁园.基于PMSM的二阶滑模无位置传感器控制[J].微电机,2020,53(12):83.
CAI Jun,LI Pengze,HUANG Yuanyuan.PMSM Based Second-order Sliding Mode Position Sensorless Control[J].MICROMOTORS,2020,53(08):83.
收稿日期:2022-02-16
基金项目:浙江省尖兵计划(2022C01001);国家自然科学基金(52007161,51837010)
作者简介:黄依婷(1997),女,硕士研究生,研究方向为永磁同步伺服电机现代控制技术。
王云冲(1987),男,博士,副教授,研究方向为永磁电机设计与控制技术。
史 丹(1986),女,博士,博士后,研究方向为低成本交流永磁电机设计。
陈毅东(1983),男,博士,副高级工程师,研究方向为电机矢量控制及容错控制。
沈建新(1969),男,博士,教授,研究方向为电机拓扑与驱动控制。